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Summary17

18

1. Sound emissions by ships and boats can strongly impact marine19

life, with potential to affect communications, breeding and prey20

and predator relationships. Automatic detection of boat signa-21

tures in underwater audio recordings is thus an important task.22

Automated solutions are particularly relevant for monitoring pre-23

servation areas where the presence of watercrafts is usually reg-24

ulated. The task is particularly challenging because it requires25

distinguishing multiple overlapping acoustic events in typically26

noisy audio recordings.27

2. In this paper we introduce an algorithm for boat and ship de-28

tection which computes an acoustic signature that captures the29

variance in the frequency amplitudes observed over the duration30

of the signal.31

3. We evaluated the algorithm on a database of underwater record-32

ings collected at two conservation areas in the State of São Paulo,33

Brazil, with very good results, and also compared it with an ex-34

isting solution.35

4. Besides being effective, the algorithm requires limited user input36

and no parameter fine tuning to handle diverse situations. It37

thus provides a solution to automate the detection of vessels,38

with potential applications for monitoring marine preservation39

areas.40

Keywords: Acoustic Ecology, Boat, DEMON, Detection, Signature, Sound-41
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Introduction43

Audio signals emitted by boats, ships and water crafts in general can strongly44

impact marine life. They may interfere with species communication (Witte-45

kind and Schuster, 2016), echolocation mechanisms (Veirs et al., 2016) and46

threaten fish population growth (Jain-Schlaepfer et al., 2018).47

Ecological audio recorders and hydrophones offer a cost effective method48

for ocean monitoring in order to identify undesirable or threatening scenarios.49

However, manual inspection of collections of audio recordings obtained over50

extensive time periods is not feasible, in view of the time and human effort it51

demands. This has motivated many research efforts towards devising meth-52

ods to automatically detect the presence of vessels in underwater acoustic53

recordings.54

While some solutions have employed classification approaches derived55

from the analysis of acoustic features (Leal et al., 2015), others have focused56

on the specific spectral signatures of the sounds emitted by the different57

types of vessels, e.g. training neural networks to detect a set of known signa-58

tures (Pollara et al., 2017; Slamnoiu et al., 2016; Chung et al., 2011; Hanson59

et al., 2008). Nonetheless, improving detection accuracy in noisy conditions60

and reducing the rate of false positives remain as challenges. A related rel-61

evant issue is automatic classification, e.g., categorizing the vessels detected,62

for example, according to their size (small, medium, large).63

The Detection of Envelope Modulation On Noise (DEMON) is one of64

the most reliable methods for ship detection and classification (Chung et al.,65

2011). However, it is reported to yield poor results on noisy signals. Moreover,66
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it is highly dependable on a manual selection of the relevant frequency band67

pass filters for analysis, which must be tuned according to the type of target68

vessel (Hanson et al., 2008).69

In this work we introduce a novel method to automatically detect the70

presence of boats or ships in acoustic underwater recordings. Similarly to the71

DEMONmethod, ours relies on computing acoustic signatures from the input72

signal. However, our method has lower computational cost and requires no73

calibration or human intervention. Moreover, we show that it can successfully74

detect vessels even in challenging conditions posed by very noisy signals, as75

in recordings that include crustacean acoustic activity.76

In the remainder of this paper, first we we discuss related research on77

automatic vessel detection and characterization. Then we describe the tech-78

nique developed, explaining its underlying rationale and presenting the al-79

gorithm for signature computation and vessel detection. We present results80

from employing the proposed algorithm to detect ships and small boats in81

a database of underwater recordings collected at two protected sites on the82

Brazilian coast. We also present results comparing the performance of our83

method with an implementation of a DEMON-type signature, in terms of84

quality and computational cost. Finally, we present conclusions and discuss85

future work.86

Related Work87

A significant increase in the number of large vessels navigating the oceans88

has motivated investigations on the effects of noise levels on marine life (Wit-89
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tekind and Schuster, 2016; Merchant et al., 2014).90

Large vessels emit acoustic signals in the low frequency spectrum, the91

same frequency bands used for communication by certain groups of animals,92

such as baleen whales (Wittekind and Schuster, 2016). Noise due to ships93

has also been found to disrupt the echolocation mechanism of endangered94

species such as killer whales (Veirs et al., 2016).95

A recent study suggested motorboats cause a stress response in fish em-96

bryos (Jain-Schlaepfer et al., 2018), with an increase in their heart rate and97

even stronger effects, depending on the engine type, e.g., two or four strokes.98

The potential impact of underwater noise on marine mammals is widely99

recognized. Merchant et al. (2014) characterized the natural and anthropo-100

genic contributors to underwater noise, specifically in a conservation area101

with increased shipping activity associated with offshore energy develop-102

ments. They monitored ship activity using Automatic Identification System103

(AIS), in which transponders send information about each ship present in104

the area, in addition to video surveillance and automated sound recorders to105

monitor noise levels. They correlated the data collected from those sources106

to investigate the relationship between broadband sound exposure and in-107

dicators proposed by the EU Marine Strategy Framework Directive to access108

the effects of noise exposure over a locally protected bottlenose dolphin pop-109

ulation. The authors determined that the bottlenose dolphin population is110

not under current danger due to the current noise levels they are exposed,111

however their study will serve as a baseline for future investigations on the112

effect of noise levels on the local marine life.113

The combination of low-cost automated acoustic recorders and algorithms114
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capable of detecting boats in long duration recordings can provide an effect-115

ive solution to monitoring conservation areas for the presence of vessels. Leal116

et al. (2015), for instance, introduced a method for boat classification based117

on Fourier transform and signal processing to identify the occurrence of ves-118

sels in the recordings.119

Features extracted from the audio spectrum and fed to Artificial Neural120

Networks (ANNs) and Support Vector Machines (SVMs) have been success-121

fully employed to classify ships according to their type (Leal et al., 2015). A122

10-dimensional feature array was created, given by the highest peak value in123

the original audio signal plus eight values corresponding to the energies of124

the first eight 500-Hz segments, and the central frequency of the smoothed125

signal. Leal et al. (2015) argue that acoustic emissions by vessels are too126

complex to be analyzed directly from the raw form of the signal’s discrete127

Fourier transform.128

Averbuch et al. (2011) rely on wavelet packet coefficients to detect cer-129

tain types of vessel in recordings with background noise. They derive acoustic130

signatures using a combination of a Linear Discriminant Analysis (LDA) clas-131

sifier with Classification and Regression Trees (CART), plus an additional132

component to reduce false alarms. Automatic real-time detection requires a133

training step with a set of pre-registered signatures of interest, where the sig-134

natures are generated from “energy maps” derived from the blocks of “wavelet135

packet coefficients”.136

The method by Yan et al. (2017) uses a combination of resonance-based137

sparse signal decomposition (RSSD) and Hilbert marginal spectrum (HMS)138

analysis to recognize certain types of vessels, defined a priori. The authors139
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use an RSSD decomposition of the original audio signal to separate it into140

high and low resonance signals, corresponding respectively to the target and141

background noise. Hilbert-Huang transform (HHT) is applied to extract142

characteristics from the purified audio and SVM is employed for signal clas-143

sification. Gaussian white noise was added to the recordings in different144

proportions to perform the decomposition tests and obtain the boat signa-145

tures.146

Both previous solutions demand transformations of the original signal,147

e.g., employing RSSD or waveletets, and are targeted at the problem of148

categorizing the vessel signatures against a predefined set of classes. The149

solution proposed in this paper to compute vessel signatures does not re-150

quire complex transformations of the original signal, as it relies directly on151

its FFT frequency spectrum. Moreover, it is aimed at detecting the pres-152

ence of acoustic events introduced by arbitrary types of vessels in the audio153

recordings, without performing classification.154

A well-known method for vessel detection in audio recordings is the De-155

tection of Envelope Modulation On Noise (DEMON) algorithm. By enhan-156

cing audio frequencies characteristic of vessel emissions it creates an acous-157

tic signature that can be employed for classification (Pollara et al., 2017,158

2016; Chung et al., 2011). Introduced over 50 years ago (Tuteur, 1963), the159

DEMON signature has inspired several novel ship classification algorithms160

(Chung et al., 2011).161

A recent study compared four DEMON-type algorithms (Slamnoiu et al.,162

2016) regarding their ability to detect small ships and divers, as well as their163

robustness to acoustic noise. The same authors (Slamnoiu et al., 2016) in-164
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troduced a variation of the classic algorithms that was shown to yield similar165

results with less computational effort, also arguing that their modified DE-166

MON algorithm is more robust to noise.167

Chung et al. (2011) described an approach for identification and classifica-168

tion of multiple ships in busy harbor conditions using the DEMON algorithm.169

Employing a system consisting of four hydrophones, the authors used cross-170

correlation to compute the delay between the corresponding recordings and171

could even estimate the relative positions of the boats. Chung et al. (2011)172

state that ship detection and classification are governed by the propeller and173

by engine parameters such as number of blades and rotational speed. As174

such, the audio spectrum is one of the most reliable acoustic parameters to175

accomplish such tasks. A major limitation of approaches that rely on the176

standard DEMON algorithm is that human intervention is required to ob-177

tain good results. For instance, the user must select a suitable band pass178

filter to recognize a specific signature.179

In order to improve the resolution of the resulting DEMON algorithm180

and increase the capability of detecting subtle details within the recordings,181

Hanson et al. (2008) used cyclostationary signal processing, exploiting the182

spectral redundancy inherent to the propeller signal. This enhancement en-183

abled blind identification of the shaft speed and number of propeller blades,184

even in noisy signal conditions. This modification improved signal resolution185

and allowed identifying the presence of multiple vessels. Emission by snap-186

ping shrimps is, according to the authors, a major source of noise that can187

render methods based on the DEMON signature innefective.188

Several relevant contributions previously discussed relied on the DEMON189
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algorithm and variations therein. Nonetheless, besides its sensitivity to cer-190

tain types of noise, computing a DEMON signature from raw audio signals191

requires non-trivial levels of human intervention. The solution introduced in192

this paper adopts a different strategy to obtain an acoustic signature, which is193

simpler than the DEMON signature, practically eliminating the need of user194

intervention during the extraction and detection processes. Our tests, per-195

formed on audio recordings collected at marine ecological conservation areas196

with intense crustacean acoustic activity, indicate that the technique can197

successfully detect the presence of different types of boats and also identify198

their corresponding acoustic signatures.199

Materials and Methods - Spectral Amplitude200

Variation Signature for Vessel Detection201

A first step in automatic detection of boats, ships and other types of water202

crafts in underwater acoustic recordings is to distinguish their acoustic signa-203

tures from those due to natural elements such as fish choruses or crustacean204

acoustic activity. Audio signals emitted by vessels can be characterized by205

narrow stationary frequency signatures, as the engine, propellers and cavita-206

tion produce sounds that usually remain stable along the duration of a single207

recording.208

The audio spectrograms shown in Figure 1 illustrate occurrences of three209

acoustic events captured underwater, namely boats, indicated by the red210

squares, fish choruses, indicated by the blue squares and background noise211
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from crustaceans, visually perceptible as vertical lines in both spectrograms.212

The spectral signatures of both the fish choruses and the boats are charac-213

terized by frequency peaks that persist along extensive time periods. Even214

though they may appear similar, the frequency peaks due to boats appear215

over narrow frequency bands, unlike the fish choruses, which are observed216

over wider bands. The distinction poses a challenging scenario for automatic217

boat detection, as boats and fish choruses can be easily mistaken, and boat218

events may be totally masked by strong background noise.219

Our proposed method for automatic vessel detection in underwater eco-220

logical recordings considers certain unique features of the sounds emitted by221

vessels to discern their characteristic frequency peaks from those produced222

by other acoustic events. The algorithm considers as input the dB frequency223

spectrum of the audio signal segmented into one-minute audio samples. It224

initially computes a so-called frequency amplitude variation (FAV) sig-225

nature from each one-minute segment of the audio spectrum.226

The overall process, as well as the motivation for our choices in deriving227

the proposed algorithm are detailed next. Unlike the DEMONmethod, which228

considers the audio envelope of the signal, our algorithm relies on information229

obtained from the audio spectrogram matrix. The audio spectrogram is230

computed with the Short-Time Fourier Transform (STFT), using as input231

the audio signal and an FFT size, which was established as 11025, equal to the232

audio sampling rate, in order to yield a nominal frequency resolution of 1Hz233

while resulting in one FFT sample per second. The resulting spectrogram234

matrix thus has F = (11025/2) frequencies and S = (N×60) samples, or one235

sample for each second of the input audio, where N is the audio duration, in236
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minutes. Our analyses have been conducted on 15-minute recordings.237

Algorithm 1 describes the necessary steps to obtain the FAV signature238

and the corresponding boat detection signature.239

Algorithm 1: FAV signature computation
Input:

1 Sample[0..60][0..Rate/2] . 1-Minute Spectrogram matrix
2 Rate . Audio sampling rate
3 MaxFreq . Maximum frequency of analysis
4 SDMultiplier . SD threshold multiplier
Result:

4 FAV . Frequency Amplitude Variation signature
5 BoatDetection . Boat detection signature

6 Mean[0..Rate/2]← frequencyMean(Sample)
7 SmoothMean[0..Rate/2]← smooth(Mean, blackman, 8)
8 SD ← StandardDeviation(SmoothMean)

9 Mean←Mean[0..MaxFreq]
10 SmoothMean← SmoothMean[0..MaxFreq]

11 FAV [0..MaxFreq]←0
12 BoatDetection[0..MaxFreq]←0

13 for i← 0 to MaxFreq do
14 variation← SmoothMean[i]− SmoothMean[i− 1]
15 if variation > 0 then
16 variation← 0 . Post frequency peak

end

18 FAV [i]← |(variation)3|
19 if FAV [i] > (SD × SDMultiplier) then
20 BoatDetection[i]← 1

end
end

23 BoatDetection[0..20]← 0
24 BoatDetection[(MaxFreq − 10)..MaxFreq]← 0

25 return FAV,BoatDetection

240

As described, the spectrogram matrix covers N one-minute samples of241

the audio recording. The frequency amplitudes of each one-minute sample242
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are averaged in order to obtain a single representative frequency amplitude.243

The result is a spectrum signature of the one-minute audio segment stored244

in an array of size F , where each entry corresponds to an average frequency245

amplitude (Algorithm 1, lines 6-7). Computing the average spectrum signa-246

ture of one-minute audio samples, instead of the entire audio, avoids missing247

short duration events. It also allows precisely locating the events along the248

audio duration, which is useful for analysis and visualization purposes.249

The spectrum signature is the input to the FAV signature computation,250

which is at the core of the boat detection procedure. The size of the spectrum251

signature is equal to the maximum frequency component in the recording, as252

it has been obtained considering F , however it can be set to a maximum fre-253

quency of analysis (Algorithm 1, lines 9-10). The spectrum signature is thus254

stored in an array in which each entry corresponds to a frequency window255

of 1Hz. Let SmoothMean[0...F − 1] denote the array storing the smoothed256

spectrum signature, with F values. It is possible to compute the differences257

between each pair of frequency amplitudes in the signature, applying Equa-258

tion 1 to each element in this array (Algorithm 1, lines 14-16).259

FAVf =
∣∣(SmoothMeanf − SmoothMeanf+1)

3
∣∣ (1)

Equation 1 yields the unsigned differences between consecutive frequency260

pairs of the input signal (Algorithm 1, line 18). The resulting differences,261

raised to power 3, are stored as elements of a new array FAV , of size F − 1,262

which stores the FAV signature. The reason for raising the resulting differ-263

ences to power 3 is to emphasize the frequency peaks due to boats against the264
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peaks due to other events that also introduce frequency amplitude variations.265

Raising to other power values could yield a similar effect, but empirical in-266

vestigations led us to this choice.267

The FAV signature captures and emphasizes persistent variations in the268

frequency amplitudes contained in the input spectrum. Such variations can269

yield a single peak or multiple frequency peaks, resulting in different patterns270

characteristic of certain acoustic events, including boats. Our goal is thus to271

identify the peak patterns characteristic of acoustic emissions by boats.272

A threshold of α = 1.5×Standard Deviation of the original spectrum has273

been empirically found suitable to identify the frequency peak patterns due274

to boats, even in noisy conditions. The algorithm applies this threshold to275

the FAV signature (Algorithm 1, lines 19-20) to yield a binary boat detection276

signature array, also of size F − 1, applying Equation 2:277

BoatDetectionf = h(FAVf , α) (2)

where278

h(FAVf , α) =


1, if FAVf >= α

0, otherwise
(3)

α =

√√√√ 1

n

n∑
i=1

(SmoothMeani − µ)2

× 1.5 (4)

µ =

∣∣∣∣∣ 1n
n∑

i=1

SmoothMeani

∣∣∣∣∣ (5)
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The result is a binary array BoatDetection, in which each entry is flagged279

to 1 whenever the corresponding entry in the FAV signature array is above280

the threshold (SmoothMeann > α), signalling this as a peak indicative of281

the presence of a boat, otherwise the corresponding array entry remains set282

as 0.283

The acoustic events introduce sound amplitude variations in the audio sig-284

nal spectrum, which can be observed in the form of characteristic patterns285

of peak amplitudes. The underlying rationale in computing the FAV signa-286

ture is to identify the peak patterns due to boats and ignore those related287

to other acoustic events captured in the recordings. Our method identifies a288

characteristic signature of each one-minute audio sample. It is thus possible289

to distinguish the patterns due to boats from those originated from overlap-290

ping acoustic events. Once the frequency peaks have been identified in the291

FAV signature, a thresholding operation can be applied to obtain a binary292

array with the boat detection signature.293

Since our algorithm measures the differences in amplitude between neigh-294

boring frequencies, it performs better with a standard spectrum in dB scale,295

in which the amplitude variations are smoother. Measuring this frequency296

variation along the audio spectrum will result in a characteristic signature297

with amplitude peaks due to noticeable acoustic events. Operating on the298

dB scale audio spectrum (Figure 2-A) facilitates distinguishing the peaks due299

to boats from those introduced by other acoustic events.300

Figure 3 illustrates two signatures computed with this approach for two301

one-minute samples from the recordings depicted in the spectrograms in Fig-302

ure 1. The charts show the spectrum signature (blue line), the FAV signature303
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(green line) and the boat detection signature (red vertical watermarks).304

The signatures in Figure 3-A refer to the first minute of the recording305

depicted in Figure 1-A, which includes a fish chorus overlapped with a ship306

or large boat, whereas those in Figure 3-B refer to minute 11 in the recording307

depicted in Figure 1-B, which includes a small boat and heavy noise due to308

crustacean acoustic emission. One observes in the FAV signature in Figure 3-309

A that only frequency peaks due to boats stand out, whereas other acoustic310

events are largely ignored. The FAV and boat detection signatures depicted311

in Figure 3-B show that the algorithm detected the faint signal of the small312

boat even in the presence of heavy background noise.313

Our method to process an input audio database consists of the following314

steps. Given a root directory path containing the audio files to be processed,315

first the signatures are computed for each individual recording applying Al-316

gorithm 1, i.e., the spectrum, the frequency amplitude variation (FAV) and317

the boat detection signatures. The resulting signatures for each file are stored318

in a corresponding CSV file that preserves the source file name. The al-319

gorithm also saves summary information on each boat detection signature,320

namely the number of peaks identified, the shortest distance between the321

peaks, and the lowest and highest amplitude peak values – this information322

may be useful in further vessel classification procedures. The CSV signature323

files are saved in a child folder of the root directory; the summary information324

is stored in a single CSV file saved in the root directory.325

The process requires two parameters: the sampling rate of the audio326

recordings, which is known a priori, and a boat detection threshold. The327

default threshold, which yielded good results in the databases studied, has328
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been set empirically to 1.5 times the standard deviation of the amplitude329

spectrum of the signal. Thus, any peak that surpasses this threshold is330

interpreted as a boat detection.331

Results332

The method has been validated on audio recordings collected at two sites333

located on the West coast of the State of São Paulo, namely the Laje de334

Santos Marine State Park (LSMSP, located at 24°15′48′′S, 46°12′00′′W ) and335

the Xixová-Japuí State Park (XJSP, located at 24°0′22′′S, 46°23′29′′W ). Both336

sites exhibit boat traffic and are characterized by great marine biodiversity.337

The LSMSP is 30km (19 miles) off the coast and serves as a protected area338

for reposition of fish shoals and safe reproduction of species. The XJSP339

conservation unit encompasses a marine area SW of the Santos Bay and an340

adjacent inland region of tropical forest. This is an area with strong human341

presence, close to a very busy port in Brazil (Sánchez-Gendriz and Padovese,342

2017; Sánchez-gendriz and Padovese, 2015).343

The datasets consist of 15-minute monaural audio files recorded at a344

sampling rate of 24 kHz. Recordings were obtained underwater with a custom345

autonomous hydrophone recorder developed at LACMAN (Laboratory of346

Acoustics and Environment of the Polytechnic School of the University of347

São Paulo)1.348

In total, we analyzed 2,675 recordings from LSMSP and 2,390 recordings349

from XJSP. As general observations, we noticed that the sound levels of the350

1http://lacmam.poli.usp.br
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recordings taken at XJSP are, in average, 10dB higher than those taken at351

LSMSP. This is possibly because XJSP is closer to the coast and has intense352

boat traffic, whereas LSMSP is located in a quieter area farther away from353

the coast. We also observed in some XJSP audio files a recording failure in354

the low frequencies up to 100Hz. Both databases include many recordings355

with multiple occurrences of diverse boats and ships, under different condi-356

tions. Our goal was to asssess the effectiveness of the proposed algorithm in357

automatically detecting the presence of ships and boats on recordings collec-358

ted from February 1 to February 28, 2015 (LSMSP site) and from February359

4 to February 28, 2015 (XJSP site).360

The spectrograms in Figures 4 and 5 depict, respectively, recordings taken361

at two arbitrary days, namely February 17 at LSMP and February 10 at362

XJSP. These particular days have been selected as illustrative examples of the363

multiple acoustic events that can be found in both databases. The figures also364

illustrate the outcome of the proposed boat detection algorithm. Detections365

are displayed in the form of a line graph at the bottom and temporally aligned366

with the corresponding audio spectrogram.367

The red line indicates the boat detections at their exact location in time368

along the duration of the audios, and also informs the number of frequency369

amplitude peaks associated with the boat event, as detected by the algorithm.370

In the examples, the number of peaks varied from 0 (no boat detected) up371

to 5 peaks in the recordings taken at the LSMSP site (Figure 4); or from 0372

up to 13 peaks in the recordings taken at the XJSP site (Figure 5).373

The boat detections identified have been confirmed by listening to the374

corresponding audio files. In all cases, a manual inspection confirmed the375
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automatic detection has been successful. In a few and very specific cases376

false negatives occurred, with the algorithm failing to detect a boat that can377

be identified in the audio; specific cases are discussed later in this section.378

The boat detection line for the recordings from LSMSP (Figure 4) shows379

that the signatures of the boats detected in the early morning are charac-380

terized by having one to three peaks and are not contiguous, whereas the381

signatures of boats detected from 9:00am onwards are characterized by more382

peaks which are also very close – these usually correspond to a series of short383

duration acoustic events.384

Observing the recordings from XJSP (Figure 5), one notices that longer385

duration acoustic events associated with boats are frequent during certain386

morning and evening periods. The boat detection line chart reveals multiple387

short duration boat events occurring frequently from nearly 9:00am until388

dusk. Short-term boat events have also been detected in the early morning,389

before 9:00am, and during the evening, after 6:00pm. After 6:30pm, when390

an overlapping fish chorus event is visible in the spectrogram, multiple boat391

events have been detected with signatures characterized by higher numbers392

of peaks. From 10:00pm it is possible to observe a long duration boat event393

that persists until midnight.394

Acoustic events typical of the site, such as fish choruses, can mask some of395

the peaks characteristic of a boat signature, as frequency peaks of both events396

overlap. They can still be distinguished by further inspecting the differences397

in the amplitudes of the neighboring frequencies. Nonetheless, the overlap398

may cause boat peaks at these frequencies to go undetected. In these cases,399

succesful detection depends on a proper choice of the detection threshold400
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defined relative to the standard deviation of the spectrum signature, which401

is the single setting of the automatic detection process that may require user402

adjustment.403

Figure 6 shows an example in which a long duration boat event has been404

detected. The boat detection line chart appears as a line with a constant405

number of peaks over a range of frequencies, which persists during nearly406

the entire duration of the recording. The detection line chart shows two to407

three peaks along minutes 1 to 9. The peaks overlap with the frequencies of408

a simultaneous fish chorus event.409

The audio of the spectrogram in Figure 7 includes an acoustic event oc-410

curring from minutes 7 to 12, approximately. Listening to the audio one411

observes the sound of (apparently) a motor boat that gradually approaches412

the hydrophone and then its engine is turned off. The boat signature detec-413

ted has a varying number of peaks: an initial detection indicates 3 peaks,414

followed by a short period with no detection; the boat is again detected with415

a signature of 8 peaks, going up to 12 peaks in minute 11, then in minute 12416

only a single peak is detected, when the engine is powered off. The varying417

number of peaks is due to the non uniform properties of the sound emission by418

the boat. Its signal amplitude increases as it approaches the hydrophone and419

fades away when the engine is suddenly turned off. The algorithm success-420

fully detected the boat, despite the unfavourable conditions and overlapping421

acoustic noise from a fish chorus.422

Another difficult case for the algorithm is illustrated in Figure 8, in which423

the audio depicts a short duration and non-uniform sound emission by a boat,424

which is masked by extensive background noise due to crustacean acoustic425
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activity. Nonetheless, the algorithm managed to achieve a partial recognition,426

as indicated by the detection line graph, in minutes 5 and 6. Only one of427

the peaks of the boat signature has been identified, due to the short interval428

between the acoustic events and the overlapping noise.429

A particular case in which the algorithm failed to detect the boat sig-430

nature is shown in Figure 9, which depicts an audio that includes a boat431

with non-constant acceleration. In this case, the frequencies of the spectral432

signature do not exceed the default threshold that indicates a positive boat433

detection. The acoustic event occurred in minute 12 of the recording, going434

undetected due to the insufficient duration of the peaks in a single frequency.435

Many boat occurrences have been detected in the recordings taken at436

the LSMP site, even though boat visitation is controlled or even prohibited437

at certain periods. Interestingly, from February 10 to 28 long-term acoustic438

emissions by boats are detected often in the mornings, mostly boat signatures439

characterized by up to two peaks. These emissions are low amplitude signals440

and the boats are apparently located distant from the hydrophone. Yet the441

algorithm successfully detected such occurrences, even though the recorded442

signal often includes multiple acoustic events in addition to the boats.443

Other cases confirm the effectiveness of the proposed algorithm. Consider,444

for example, the audio illustrated in the spectrogram in Figure 10. The445

algorithm detected a boat signature characterized by a single frequency peak446

in this recording. This was a particularly challenging case, because the boat447

signal was faint and heavily masked by a loud noise due to crustacean acoustic448

activity.449

A second example is illustrated in Figure 11, which depicts an audio in450
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which the algorithm detected a boat signature characterized by 35 to 59451

peaks along the duration of the recording. Although we cannot estimate the452

distance of the boat to the hydrophone, its signal is sufficiently loud for its453

signature to be properly detected even above the 1KHz frequency band.454

Yet another challenging example are cases of multiple boats captured455

in the same recording, possibly as overlapping acoustic events. The audio456

spectrogram in Figure 12 shows a boat event that persists along the duration457

of the recording, however a second boat event occurs in minutes 4 to 6.458

This is difficult to handle due to the overlap of both boat signatures. The459

signatures computed for the audio samples depicting minutes 2 to 5 are460

shown in Figure 12 to illustrate how multiple events interfere in the detection461

process. In the signatures of minutes 2 and 3 one observes the complete and462

the partial signatures of the persistent boat; in minute 4 the transient boat463

event partly masks the previous signature, introducing additional peaks. The464

emission by the transient boat in minute 5 is sufficient to mask the signature465

of the persistent boat, as it adds noise in the frequency band from 200Hz to466

2kHz. The consequence is that only the signature of the transient boat is467

detected.468

Comparison: FAV vs DEMON469

A DEMON implementation based on square-law demodulation by Pollara470

et al. (2016) available online2 has been used as baseline for a comparison with471

the proposed FAV signature, regarding detection accuracy and processing472

2https://github.com/lxpollara/pyDEMON
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times. The code and audio samples used in the analysis and comparisons473

can be downloaded from github (Reis, 2019).474

We conducted the comparison on 96 audio files selected from our data-475

bases (Xixová and Japuí State Parks), corresponding to 24 hours of au-476

dio analysed at a one-minute sample resolution, totaling 1,440 one-minute477

samples representative of typical scenarios found in underwater ecological478

recordings. We conducted a manual annotation process and identified that479

from the 1,440 samples considered, 706 do not include boat events, whereas480

the remaining 734 include diverse observable boat occurrences, varying from481

very clear to very faint signals. The samples depict distinct situations, in-482

cluding non-uniform vessel emissions near the hydrophone and other difficult483

scenarios characterized by overlapping with crustacean acoustic emissions or484

fish choruses.485

The DEMON signature computation requires the definition of a target486

frequency window for each detection scenario. Inadequate choice of this487

initial input parameter can render the detection task unfeasible. In order to488

ensure a proper comparison, the input samples were processed similarly for489

both methods, setting the higher frequency to 900Hz and the low frequency490

to 400Hz as the default parameters for the DEMON signature calculations.491

Each one-minute sample was smoothed with a size 11 Blackman window492

convolution, and the corresponding standard deviations were extracted.493

In both methods, a detection occurs whenever the corresponding signa-494

ture exceeds the corresponding detection threshold, where each excess will495

correspond to a frequency peak in the boat detection signature. We kept the496

default detection threshold for the FAV signature, i.e., 1.5×standard deviation.497
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Setting the detection threshold for DEMON requires a different approach,498

however, as the base signals vary in amplitude due to interference of noise.499

Thus, we set an initial threshold as in FAV (1.5× standard deviation), then500

obtained a basis amplitude for each frequency by smoothing the DEMON sig-501

nature with a size 64 Blackman window convolution. The basis amplitudes502

thus obtained were then added to the initial threshold.503

Under normal conditions these threshold settings enabled both methods504

to correctly detect the presence of boats and create the corresponding boat505

signatures. An example for a particular one minute sample is illustrated in506

Figure 13, where a boat with two frequency peaks can be observed, which507

has been correctly detected in both FAV and DEMON signatures. However,508

results from the methods differ in more challenging conditions. Detection509

results for a noisy sample are illustrated in Figure 14, where FAV correctly510

identified a boat with eight frequency peaks. The DEMON signature, how-511

ever, detected only one of the peaks and also incurred in a false positive512

detection of a frequency peak which is not due to a boat.513

Considering all 1,440 samples, we computed the detection accuracy and514

the correctness of the number of peaks identified in the signatures obtained515

from both methods. Detection accuracy is reported as the numbers and516

percentages of correct and incorrect boat detections. The signature accuracy517

is measured as the number of detected frequency peaks, relative to the true518

number of peaks. We report the average percentages for each method, over519

all signatures extracted.520

Table 1 shows two confusion matrices displaying the detection accuracy521

results for the FAV and the DEMON implementations, respectively. The522
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columns labeled Reality inform the number of boat occurrences according523

to the manual annotation, the rows labeled Algorithm show the results524

obtained with FAV or DEMON. Table 2 summarizes the accuracy rates and525

also the false positive and false negative rates.526

FAV correctly detected the presence of boats in 684 out of the 734 samples527

with boat occurrences, an accuracy rate of 93%. It missed 50 occurrences,528

and incured in no false positives. DEMON correctly detected 406 boat occur-529

rences, an accuracy rate of 55%. It missed 328 boat events, and incorrectly530

detected 84 acoustic events as boats. The false-negative rates in our ana-531

lysis of DEMON could be disputed, since the manual annotation identified532

some very faint boat signals. Possibly different calibrations of DEMON would533

be required for it to perform better on the database as a whole, as the condi-534

tions describing boat events vary considerably. On the other, FAV has shown535

very robust performance with the settings employed, regardless of the varied536

conditions.537

For the 734 samples including boat occurrences we also computed the538

correctness of the number of frequency peaks identified, as a measure of the539

quality of the signatures computed. For instance, given a boat signature540

with 5 frequency peaks, if a method computes the signature with 3 peaks, its541

resulting signature accuracy is 60%. As informed in Table 2 (second row),542

the average signature accuracy of the FAV method over all samples was 80%,543

whereas for the DEMON method it was 29%.544

Table 3 shows the times, in seconds, to extract the DEMON and FAV545

signatures for a 15 minute audio recording and for a one minute sample of the546

same recording, considering five executions of the algorithm implementations.547
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In the 15 minute sampling we observe a speed up of nearly 230, as the average548

execution times drop from 6.743 seconds to compute the DEMON signature549

to 0.029 seconds to compute the FAV signature. In the one minute sample550

the DEMON signature has been computed in 0.416 seconds in average, and551

the FAV signature in 0.006 seconds, a speed up of nearly 70.552

These empirical investigations provide evidence on the improved perform-553

ance of the FAV algorithm over the DEMON implementation, regarding both554

computational cost and accuracy, the later measured in terms of detection555

correctness and signature quality. Moreover, unlike DEMON, FAV requires556

no specific settings or prior knowledge of the boat frequency signatures. It557

is a self-contained solution that relies solely on the input signal of the au-558

dio spectrum. A single user setting is required to establish the detection559

threshold, where the default setting as 1.5 × Standard Deviation of the560

original spectrum proved adequate in all cases appearing in the databases561

considered.562

Summary563

In this paper we introduced FAV, a method to detect the presence of ves-564

sels in underwater ecological acoustic recordings. Results from experiments565

conducted on recordings collected in February 2015 at two sites in Brazil566

provide empirical evidence on its effectiveness. The examples discussed show567

the method can successfully detect the presence of boats even in difficult568

conditions, such as faint signals and multiple overlapping acoustic events.569

Manual inspection of all the recordings considered in the experiments re-570
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vealed no false positives and a small rate of missed detections in very specific571

situations.572

The algorithm can recognize boats under constant acceleration, where the573

resulting sound signal caused by cavitation generates characteristic peaks574

at short frequency intervals. The failure cases were of boats with erratic575

acceleration behavior. This situation shall be addressed in further work,576

possibly with an analysis of the amplitude variation in time, combined with577

frequency information and machine learning methods to recognize specific578

patterns.579

Besides detecting emissions by boats and ships, the FAV signature is also580

susceptible to sound emission by airgun arrays. The reason is that such581

devices produce acoustic energy with frequency amplitudes mostly under582

100Hz (Hermannsen et al., 2015; Landro et al., 2011), the same band of the583

boat emissions. For boat detection purposes, if an acoustic signal emitted584

by an airgun array is identified one can assume the consequent detection of585

a boat signal, since airgun arrays are towed by boats.586

In comparison with the classic DEMON method, which also relies on587

analysis of the acoustic signal for boat detection, our solution provides an al-588

ternative that is easy to implement and does not require extensive processing589

power or complex configuration of input parameters. DEMON, on the other590

hand, requires human intervention to define the best filters for each type of591

target signal and is computationally more expensive.592

In future work we intend to tackle the problem of boat classification593

based on their characteristic FAV signatures. We believe classification would594

be feasible with a combination of machine learning and data visualization595
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methods integrated into a visual analytics solution that supports user steer-596

ing. The simultaneous detection of multiple ship signatures is another chal-597

lenging task that deserves further attention.598
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Tables675

Table 1 Detection accuracy of FAV and DEMON algorithms on a database

of 1,440 one minute audio samples.
Confusion matrix FAV Confusion matrix DEMON

Reality Reality

NO Boat Boat No Boat Boat

Algorithm
NO Boat 706 50

Algorithm
NO Boat 622 328

Boat 0 684 Boat 84 406

# Samples 706 734 # Samples 706 734
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Table 2 Boat detection accuracy and signature accuracy results obtained

with the FAV and DEMON implementations, as well as false positive and

false negative detection rates.

FAV DEMON

Detection accuracy 93.19% 55.31%

Signature accuracy 80.38% 29.21%

% of false positives 0.00% 10.63%

% of false negatives 20.42% 45.14%
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Table 3 Times (in seconds) to compute the boat signatures of a 15 minute

audio recording and of a one minute sample extracted from the same audio.

Time measures were obtained from five executions of each (DEMON/FAV)

implementation on a Intel© CoreTM i7− 7700 @ 3.60GHz × 4 with 16GB

memory.

15 minute audio One minute audio

T
im

e
(S
ec
on

d
s)

DEMON FAV DEMON FAV

6.672 0.031 0.413 0.006

6.760 0.029 0.421 0.006

6.743 0.030 0.416 0.006

6.790 0.027 0.431 0.006

6.606 0.029 0.409 0.006

Avg 6.743 0.029 0.416 0.006
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Figures676

Fig. 1 Logarithmic scale spectrograms of two underwater recordings. The

red squares mark frequency peaks due to boats and the blue squares mark

peaks due to fish choruses. Both recordings include background noise due

to acoustic emission by crustaceans, that can be perceived as vertical lines

in the spectrograms. (A) 15-minute audio spectrogram with two types of

fish chorus and a boat signature characterized by three peaks; (B) 15-minute

spectrogram with a single boat signature characterized by 10 peaks and heavy

background noise due to crustacean emissions.
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Fig. 2 In both charts the blue lines depict, respectively, the frequency

spectra (up to 2.7kHz) of an input signal in dB (A) and in dB2 (B); the

green and red dotted lines depict the spectral signal smoothed by convolution

with a size 11 blackman window, scaled respectively by 1.5× and by 3× its

standard deviation. The vertical watermarks in red identify the frequency

peaks due to boat emissions.

34



Fig. 3 Spectrum signature (blue line), FAV signature (green line) and

binary boat detection signature (red marks) of (A) a recording that includes

fish chorus and a boat; and (B) a recording that includes a small boat at

minute 11. The horizontal dotted purple lines indicate the threshold defined

to associate frequency peaks with acoustic emissions by boats.
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Fig. 4 24-hour spectrogram (frequency band from 0 to 2KHz) of the audio

recordings taken at LSMSP in February 17, 2015. The recordings captured

three types of fish chorus (A, B and C), as well as long and short duration

sound emissions by boats and ships (D). The line chart at the bottom shows

the detections obtained with the proposed method minute-by-minute and the

number of peaks that characterize the corresponding boat signature.
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Fig. 5 24-hour spectrogram (frequency band from 0 to 2KHz) of audio

recordings taken at XJSP in February 10, 2015. The recordings captured

three types of fish choruses (A, B and C) and sound emissions by multiple

ships (D) appearing as long and short duratio acoustic events. The detec-

tion line chart shown under the spectrogram reveals a concentration of short

duration boat events in the period from around 9:00am to 11:00am; their

corresponding signatures are characterized by up to 13 frequency peaks.
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Fig. 6 15-minute spectrogram (frequency band from 0 to 1KHz) of a re-

cording taken at XJSP in February 4, 2015 at 05h:39m:52s. A boat has

been detected in the interval from minutes 1 to 9; the corresponding boat

detection line chart is shown at the bottom.
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Fig. 7 15-minute spectrogram of a recording taken at XJSP in February

4, 2015 at 21h:12m:44s (frequency band from 0 to 1KHz). A boat occurrence

has been detected in the interval from minutes 7 to 12; the corresponding

boat detection line chart is shown at the bottom.
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Fig. 8 15-minute spectrogram (frequency band from 0 to 1KHz) of a re-

cording taken at XJSP in February 4, 2015 at 10h:40m:46s, in which a boat

has been detected during minutes 5 and 6; the corresponding boat detection

line chart is shown at the bottom.
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Fig. 9 15-minute spectrogram (frequency band from 0 to 1KHz) of a re-

cording taken at XJSP in February 4, 2015 at 10h:10m:42s. Listening to the

audio it is possible to identify the sound of a boat at minute 12, which the

algorithm failed to detect, as observed in the corresponding detection line

chart at the bottom.

41



Fig. 10 15-minute spectrogram (frequency band from 0 to 1KHz) of a

recording taken at LSMP in February 11, 2015 at 06h:27m:57s. The low

amplitude signal from a boat has been detected in the invervals from minutes

0 to 3 and from 8 to 11, even though it is masked by crustacean noise, as

observed in the boat detection line chart shown at the bottom.
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Fig. 11 15-minute spectrogram (frequency band from 0 to 1KHz) of a re-

cording taken at LSMSP in February 11, 2015 at 15h:29m:54s. The signature

of a boat has been detected along the duration of the recording, characterized

by 35 up to 59 frequency peaks, as observed in the corresponding detection

line chart.

43



Fig. 12 15-minute spectrogram of a recording taken at LSMSP in February

4, 2015 at 04h:48m:55s, where overlapping sound emissions from two boats

can be observed. The charts show the signatures computed of the audio

samples corresponding to minutes 2, 3, 4 and 5, displaying the input spectrum

signature (blue lines) with the corresponding boat detections highlighted by

the red vertical lines.
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Fig. 13 FAV and DEMON signatures obtained for a one-minute audio

sample that includes crustacean acoustic activity overlaped with a persistent

acoustic emission by a boat (spectrogram on the right). The dotted gray

lines indicate the detection threshold (1.5 × Standard Deviation). Both

algorithms correctly detected the boat signature, with two frequency peaks.

The red watermarks indicate the peaks detected in the FAV signature (purple

line); the black dots indicate the detections in the DEMON signature (green

line).
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Fig. 14 FAV and DEMON signatures obtained for a one-minute audio

sample that includes crustacean acoustic activity overlaped with a persistent

acoustic emission by a boat (spectrogram shown on the right). The dotted

gray lines indicate the detection threshold (1.5 × Standard Deviation). In

this case the boat signature is characterized by eight frequency peaks. The

red watermarks indicate the boat peaks correctly detected in the FAV sig-

nature (purple line); the black dots indicate the detections in the DEMON

signature (green line). The DEMON algorithm identified a single peak due

to the boat, the other peak is actually a false-positive, not related to the

boat.
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