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Summary

1. Sound emissions by ships and boats can strongly impact marine

life, with potential to affect communications, breeding and prey
and predator relationships. Automatic detection of boat signa-
tures in underwater audio recordings is thus an important task.
Automated solutions are particularly relevant for monitoring pre-
servation areas where the presence of watercrafts is usually reg-
ulated. The task is particularly challenging because it requires
distinguishing multiple overlapping acoustic events in typically

noisy audio recordings.

. In this paper we introduce an algorithm for boat and ship de-

tection which computes an acoustic signature that captures the
variance in the frequency amplitudes observed over the duration

of the signal.

. We evaluated the algorithm on a database of underwater record-

ings collected at two conservation areas in the State of Sao Paulo,
Brazil, with very good results, and also compared it with an ex-

isting solution.

. Besides being effective, the algorithm requires limited user input

and no parameter fine tuning to handle diverse situations. It
thus provides a solution to automate the detection of vessels,
with potential applications for monitoring marine preservation

areas.

Keywords: Acoustic Ecology, Boat, DEMON, Detection, Signature, Sound-
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Introduction

Audio signals emitted by boats, ships and water crafts in general can strongly
impact marine life. They may interfere with species communication (Witte-
kind and Schuster, 2016), echolocation mechanisms (Veirs et al., 2016) and
threaten fish population growth (Jain-Schlaepfer et al., 2018)).

Ecological audio recorders and hydrophones offer a cost effective method
for ocean monitoring in order to identify undesirable or threatening scenarios.
However, manual inspection of collections of audio recordings obtained over
extensive time periods is not feasible, in view of the time and human effort it
demands. This has motivated many research efforts towards devising meth-
ods to automatically detect the presence of vessels in underwater acoustic
recordings.

While some solutions have employed classification approaches derived
from the analysis of acoustic features (Leal et al., [2015)), others have focused
on the specific spectral signatures of the sounds emitted by the different
types of vessels, e.g. training neural networks to detect a set of known signa-
tures (Pollara et al., 2017 Slamnoiu et al.| |2016; Chung et al., 2011; Hanson
et al., [2008). Nonetheless, improving detection accuracy in noisy conditions
and reducing the rate of false positives remain as challenges. A related rel-
evant issue is automatic classification, e.g., categorizing the vessels detected,
for example, according to their size (small, medium, large).

The Detection of Envelope Modulation On Noise (DEMON) is one of
the most reliable methods for ship detection and classification (Chung et al.|

2011). However, it is reported to yield poor results on noisy signals. Moreover,
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it is highly dependable on a manual selection of the relevant frequency band
pass filters for analysis, which must be tuned according to the type of target
vessel (Hanson et al., 2008).

In this work we introduce a novel method to automatically detect the
presence of boats or ships in acoustic underwater recordings. Similarly to the
DEMON method, ours relies on computing acoustic signatures from the input
signal. However, our method has lower computational cost and requires no
calibration or human intervention. Moreover, we show that it can successfully
detect vessels even in challenging conditions posed by very noisy signals, as
in recordings that include crustacean acoustic activity.

In the remainder of this paper, first we we discuss related research on
automatic vessel detection and characterization. Then we describe the tech-
nique developed, explaining its underlying rationale and presenting the al-
gorithm for signature computation and vessel detection. We present results
from employing the proposed algorithm to detect ships and small boats in
a database of underwater recordings collected at two protected sites on the
Brazilian coast. We also present results comparing the performance of our
method with an implementation of a DEMON-type signature, in terms of
quality and computational cost. Finally, we present conclusions and discuss

future work.

Related Work

A significant increase in the number of large vessels navigating the oceans

has motivated investigations on the effects of noise levels on marine life (Wit-
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tekind and Schuster], 2016; [Merchant et al., 2014).

Large vessels emit acoustic signals in the low frequency spectrum, the
same frequency bands used for communication by certain groups of animals,
such as baleen whales (Wittekind and Schuster, 2016)). Noise due to ships
has also been found to disrupt the echolocation mechanism of endangered
species such as killer whales (Veirs et al., 2016]).

A recent study suggested motorboats cause a stress response in fish em-
bryos (Jain-Schlaepfer et al. 2018), with an increase in their heart rate and
even stronger effects, depending on the engine type, e.g., two or four strokes.

The potential impact of underwater noise on marine mammals is widely
recognized. Merchant et al.| (2014) characterized the natural and anthropo-
genic contributors to underwater noise, specifically in a conservation area
with increased shipping activity associated with offshore energy develop-
ments. They monitored ship activity using Automatic Identification System
(AIS), in which transponders send information about each ship present in
the area, in addition to video surveillance and automated sound recorders to
monitor noise levels. They correlated the data collected from those sources
to investigate the relationship between broadband sound exposure and in-
dicators proposed by the EU Marine Strategy Framework Directive to access
the effects of noise exposure over a locally protected bottlenose dolphin pop-
ulation. The authors determined that the bottlenose dolphin population is
not under current danger due to the current noise levels they are exposed,
however their study will serve as a baseline for future investigations on the
effect of noise levels on the local marine life.

The combination of low-cost automated acoustic recorders and algorithms
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capable of detecting boats in long duration recordings can provide an effect-
ive solution to monitoring conservation areas for the presence of vessels. Leal
et al.| (2015)), for instance, introduced a method for boat classification based
on Fourier transform and signal processing to identify the occurrence of ves-
sels in the recordings.

Features extracted from the audio spectrum and fed to Artificial Neural
Networks (ANNs) and Support Vector Machines (SVMs) have been success-
fully employed to classify ships according to their type (Leal et al., [2015). A
10-dimensional feature array was created, given by the highest peak value in
the original audio signal plus eight values corresponding to the energies of
the first eight 500-Hz segments, and the central frequency of the smoothed
signal. |Leal et al.| (2015) argue that acoustic emissions by vessels are too
complex to be analyzed directly from the raw form of the signal’s discrete
Fourier transform.

Averbuch et al.| (2011) rely on wavelet packet coefficients to detect cer-
tain types of vessel in recordings with background noise. They derive acoustic
signatures using a combination of a Linear Discriminant Analysis (LDA) clas-
sifier with Classification and Regression Trees (CART), plus an additional
component to reduce false alarms. Automatic real-time detection requires a
training step with a set of pre-registered signatures of interest, where the sig-
natures are generated from “energy maps” derived from the blocks of “wavelet
packet coefficients”.

The method by |Yan et al.| (2017)) uses a combination of resonance-based
sparse signal decomposition (RSSD) and Hilbert marginal spectrum (HMS)

analysis to recognize certain types of vessels, defined a priori. The authors
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use an RSSD decomposition of the original audio signal to separate it into
high and low resonance signals, corresponding respectively to the target and
background noise. Hilbert-Huang transform (HHT) is applied to extract
characteristics from the purified audio and SVM is employed for signal clas-
sification. Gaussian white noise was added to the recordings in different
proportions to perform the decomposition tests and obtain the boat signa-
tures.

Both previous solutions demand transformations of the original signal,
e.g., employing RSSD or waveletets, and are targeted at the problem of
categorizing the vessel signatures against a predefined set of classes. The
solution proposed in this paper to compute vessel signatures does not re-
quire complex transformations of the original signal, as it relies directly on
its FFT frequency spectrum. Moreover, it is aimed at detecting the pres-
ence of acoustic events introduced by arbitrary types of vessels in the audio
recordings, without performing classification.

A well-known method for vessel detection in audio recordings is the De-
tection of Envelope Modulation On Noise (DEMON) algorithm. By enhan-
cing audio frequencies characteristic of vessel emissions it creates an acous-
tic signature that can be employed for classification (Pollara et all 2017,
2016; Chung et al.| 2011)). Introduced over 50 years ago (Tuteur, |1963), the
DEMON signature has inspired several novel ship classification algorithms
(Chung et al., 2011)).

A recent study compared four DEMON-type algorithms (Slamnoiu et al.,
2016)) regarding their ability to detect small ships and divers, as well as their

robustness to acoustic noise. The same authors (Slamnoiu et al., 2016) in-
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troduced a variation of the classic algorithms that was shown to yield similar
results with less computational effort, also arguing that their modified DE-
MON algorithm is more robust to noise.

Chung et al.| (2011)) described an approach for identification and classifica-
tion of multiple ships in busy harbor conditions using the DEMON algorithm.
Employing a system consisting of four hydrophones, the authors used cross-
correlation to compute the delay between the corresponding recordings and
could even estimate the relative positions of the boats. |(Chung et al. (2011)
state that ship detection and classification are governed by the propeller and
by engine parameters such as number of blades and rotational speed. As
such, the audio spectrum is one of the most reliable acoustic parameters to
accomplish such tasks. A major limitation of approaches that rely on the
standard DEMON algorithm is that human intervention is required to ob-
tain good results. For instance, the user must select a suitable band pass
filter to recognize a specific signature.

In order to improve the resolution of the resulting DEMON algorithm
and increase the capability of detecting subtle details within the recordings,
Hanson et al. (2008) used cyclostationary signal processing, exploiting the
spectral redundancy inherent to the propeller signal. This enhancement en-
abled blind identification of the shaft speed and number of propeller blades,
even in noisy signal conditions. This modification improved signal resolution
and allowed identifying the presence of multiple vessels. Emission by snap-
ping shrimps is, according to the authors, a major source of noise that can
render methods based on the DEMON signature innefective.

Several relevant contributions previously discussed relied on the DEMON
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algorithm and variations therein. Nonetheless, besides its sensitivity to cer-
tain types of noise, computing a DEMON signature from raw audio signals
requires non-trivial levels of human intervention. The solution introduced in
this paper adopts a different strategy to obtain an acoustic signature, which is
simpler than the DEMON signature, practically eliminating the need of user
intervention during the extraction and detection processes. Our tests, per-
formed on audio recordings collected at marine ecological conservation areas
with intense crustacean acoustic activity, indicate that the technique can
successfully detect the presence of different types of boats and also identify

their corresponding acoustic signatures.

Materials and Methods - Spectral Amplitude
Variation Signature for Vessel Detection

A first step in automatic detection of boats, ships and other types of water
crafts in underwater acoustic recordings is to distinguish their acoustic signa-
tures from those due to natural elements such as fish choruses or crustacean
acoustic activity. Audio signals emitted by vessels can be characterized by
narrow stationary frequency signatures, as the engine, propellers and cavita-
tion produce sounds that usually remain stable along the duration of a single
recording.

The audio spectrograms shown in Figure [I] illustrate occurrences of three
acoustic events captured underwater, namely boats, indicated by the red

squares, fish choruses, indicated by the blue squares and background noise
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from crustaceans, visually perceptible as vertical lines in both spectrograms.
The spectral signatures of both the fish choruses and the boats are charac-
terized by frequency peaks that persist along extensive time periods. Even
though they may appear similar, the frequency peaks due to boats appear
over narrow frequency bands, unlike the fish choruses, which are observed
over wider bands. The distinction poses a challenging scenario for automatic
boat detection, as boats and fish choruses can be easily mistaken, and boat
events may be totally masked by strong background noise.

Our proposed method for automatic vessel detection in underwater eco-
logical recordings considers certain unique features of the sounds emitted by
vessels to discern their characteristic frequency peaks from those produced
by other acoustic events. The algorithm considers as input the dB frequency
spectrum of the audio signal segmented into one-minute audio samples. It
initially computes a so-called frequency amplitude variation (FAV) sig-
nature from each one-minute segment of the audio spectrum.

The overall process, as well as the motivation for our choices in deriving
the proposed algorithm are detailed next. Unlike the DEMON method, which
considers the audio envelope of the signal, our algorithm relies on information
obtained from the audio spectrogram matrix. The audio spectrogram is
computed with the Short-Time Fourier Transform (STFT), using as input
the audio signal and an FF'T size, which was established as 11025, equal to the
audio sampling rate, in order to yield a nominal frequency resolution of 1Hz
while resulting in one FF'T sample per second. The resulting spectrogram
matrix thus has F' = (11025/2) frequencies and S = (/N x 60) samples, or one

sample for each second of the input audio, where N is the audio duration, in

10



37 minutes. Our analyses have been conducted on 15-minute recordings.
238 Algorithm [I] describes the necessary steps to obtain the FAV signature

230 and the corresponding boat detection signature.

Algorithm 1: FAV signature computation

Input:
1 Sample[0..60][0..Rate/2] > 1-Minute Spectrogram matrix
2 Rate > Audio sampling rate
3 MaxFreq > Maximum frequency of analysis
4 SDMultiplier > SD threshold multiplier
Result:
4 FAV > Frequency Amplitude Variation signature
5 BoatDetection > Boat detection signature

6 Mean|0..Rate/2] < frequencyMean(Sample)
7 SmoothMean|0.. Rate /2] <— smooth(Mean, blackman, 8)
8 SD <« StandardDeviation(SmoothMean)

9 Mean < Mean|0..MazFreq|
10 SmoothMean < SmoothMean|0..MaxFreq|

11 FAV[0..MaxFreq] <0
12 BoatDetection|0..Max Freq| <0

240

13 for i < 0 to MaxFreq do

14 variation <— SmoothMean[i] — SmoothMeanli — 1]

15 if variation > 0 then

16 ‘ variation < 0 > Post frequency peak
end

18 | FAVY]i] + |(variation)?|

19 if FAV[i| > (SD x SDMultiplier) then
20 | BoatDetection[i] + 1
end

end

23 BoatDetection|0..20] < 0
24 BoatDetection[(MaxFreq — 10)..MazxFreq] < 0

25 return F AV, BoatDetection

241 As described, the spectrogram matrix covers N one-minute samples of

22 the audio recording. The frequency amplitudes of each one-minute sample
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are averaged in order to obtain a single representative frequency amplitude.
The result is a spectrum signature of the one-minute audio segment stored
in an array of size F', where each entry corresponds to an average frequency
amplitude (Algorithm , lines 6-7). Computing the average spectrum signa-
ture of one-minute audio samples, instead of the entire audio, avoids missing
short duration events. It also allows precisely locating the events along the
audio duration, which is useful for analysis and visualization purposes.

The spectrum signature is the input to the FAV signature computation,
which is at the core of the boat detection procedure. The size of the spectrum
signature is equal to the maximum frequency component in the recording, as
it has been obtained considering F', however it can be set to a maximum fre-
quency of analysis (Algorithm , lines 9-10). The spectrum signature is thus
stored in an array in which each entry corresponds to a frequency window
of 1Hz. Let SmoothMean|0...F' — 1] denote the array storing the smoothed
spectrum signature, with F' values. It is possible to compute the differences
between each pair of frequency amplitudes in the signature, applying Equa-

tion 1| to each element in this array (Algorithm |1}, lines 14-16).

FAV; = |(SmoothMeany — SmoothMeany.1)®| (1)

Equation [1]yields the unsigned differences between consecutive frequency
pairs of the input signal (Algorithm |1} line 18). The resulting differences,
raised to power 3, are stored as elements of a new array F'AV, of size F' — 1,
which stores the FAV signature. The reason for raising the resulting differ-

ences to power 3 is to emphasize the frequency peaks due to boats against the

12
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peaks due to other events that also introduce frequency amplitude variations.
Raising to other power values could yield a similar effect, but empirical in-
vestigations led us to this choice.

The FAV signature captures and emphasizes persistent variations in the
frequency amplitudes contained in the input spectrum. Such variations can
yield a single peak or multiple frequency peaks, resulting in different patterns
characteristic of certain acoustic events, including boats. Our goal is thus to
identify the peak patterns characteristic of acoustic emissions by boats.

A threshold of o = 1.5 x Standard Deviation of the original spectrum has
been empirically found suitable to identify the frequency peak patterns due
to boats, even in noisy conditions. The algorithm applies this threshold to
the FAV signature (Algorithm , lines 19-20) to yield a binary boat detection

signature array, also of size F' — 1, applying Equation [2}

BoatDetectiony = h(F AV}, a) (2)

where

1, if FAVf >=
WEAV;, o) = (3)

0, otherwise

1 n
= — S thMean; — ()2 1.5 4
«a nZ( Moo ean; — ) X (4)

=1

ILL:

1 n
— g SmoothMean;
n

i=1

13
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The result is a binary array BoatDetection, in which each entry is flagged
to 1 whenever the corresponding entry in the FAV signature array is above
the threshold (SmoothMean, > «), signalling this as a peak indicative of
the presence of a boat, otherwise the corresponding array entry remains set
as 0.

The acoustic events introduce sound amplitude variations in the audio sig-
nal spectrum, which can be observed in the form of characteristic patterns
of peak amplitudes. The underlying rationale in computing the FAV signa-
ture is to identify the peak patterns due to boats and ignore those related
to other acoustic events captured in the recordings. Our method identifies a
characteristic signature of each one-minute audio sample. It is thus possible
to distinguish the patterns due to boats from those originated from overlap-
ping acoustic events. Once the frequency peaks have been identified in the
FAV signature, a thresholding operation can be applied to obtain a binary
array with the boat detection signature.

Since our algorithm measures the differences in amplitude between neigh-
boring frequencies, it performs better with a standard spectrum in dB scale,
in which the amplitude variations are smoother. Measuring this frequency
variation along the audio spectrum will result in a characteristic signature
with amplitude peaks due to noticeable acoustic events. Operating on the
dB scale audio spectrum (Figure[2}A) facilitates distinguishing the peaks due
to boats from those introduced by other acoustic events.

Figure (3| illustrates two signatures computed with this approach for two
one-minute samples from the recordings depicted in the spectrograms in Fig-

ure . The charts show the spectrum signature (blue line), the FAV signature

14



304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

(green line) and the boat detection signature (red vertical watermarks).

The signatures in Figure BFA refer to the first minute of the recording
depicted in Figure [[FA, which includes a fish chorus overlapped with a ship
or large boat, whereas those in Figure [3} B refer to minute 11 in the recording
depicted in Figure [[}B, which includes a small boat and heavy noise due to
crustacean acoustic emission. One observes in the FAV signature in Figure 3}
A that only frequency peaks due to boats stand out, whereas other acoustic
events are largely ignored. The FAV and boat detection signatures depicted
in Figure [3} B show that the algorithm detected the faint signal of the small
boat even in the presence of heavy background noise.

Our method to process an input audio database consists of the following
steps. Given a root directory path containing the audio files to be processed,
first the signatures are computed for each individual recording applying Al-
gorithm , i.e., the spectrum, the frequency amplitude variation (FAV) and
the boat detection signatures. The resulting signatures for each file are stored
in a corresponding CSV file that preserves the source file name. The al-
gorithm also saves summary information on each boat detection signature,
namely the number of peaks identified, the shortest distance between the
peaks, and the lowest and highest amplitude peak values — this information
may be useful in further vessel classification procedures. The CSV signature
files are saved in a child folder of the root directory; the summary information
is stored in a single CSV file saved in the root directory.

The process requires two parameters: the sampling rate of the audio
recordings, which is known a priori, and a boat detection threshold. The

default threshold, which yielded good results in the databases studied, has
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been set empirically to 1.5 times the standard deviation of the amplitude
spectrum of the signal. Thus, any peak that surpasses this threshold is

interpreted as a boat detection.

Results

The method has been validated on audio recordings collected at two sites
located on the West coast of the State of Sao Paulo, namely the Laje de
Santos Marine State Park (LSMSP, located at 24°15'48"S, 46°12'00”"W) and
the Xixova-Japui State Park (XJSP, located at 24°0'22" S, 46°23'29"1V). Both
sites exhibit boat traffic and are characterized by great marine biodiversity.
The LSMSP is 30km (19 miles) off the coast and serves as a protected area
for reposition of fish shoals and safe reproduction of species. The XJSP
conservation unit encompasses a marine area SW of the Santos Bay and an
adjacent inland region of tropical forest. This is an area with strong human
presence, close to a very busy port in Brazil (Sanchez-Gendriz and Padovese,
2017; |Sanchez-gendriz and Padovese, |2015)).

The datasets consist of 15-minute monaural audio files recorded at a
sampling rate of 24 kHz. Recordings were obtained underwater with a custom
autonomous hydrophone recorder developed at LACMAN (Laboratory of
Acoustics and Environment of the Polytechnic School of the University of
Sao Paulo)}}

In total, we analyzed 2,675 recordings from LSMSP and 2,390 recordings

from XJSP. As general observations, we noticed that the sound levels of the

Thttp://lacmam.poli.usp.br
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recordings taken at XJSP are, in average, 10dB higher than those taken at
LSMSP. This is possibly because XJSP is closer to the coast and has intense
boat traffic, whereas LSMSP is located in a quieter area farther away from
the coast. We also observed in some XJSP audio files a recording failure in
the low frequencies up to 100Hz. Both databases include many recordings
with multiple occurrences of diverse boats and ships, under different condi-
tions. Our goal was to asssess the effectiveness of the proposed algorithm in
automatically detecting the presence of ships and boats on recordings collec-
ted from February 1 to February 28, 2015 (LSMSP site) and from February
4 to February 28, 2015 (XJSP site).

The spectrograms in Figures[d and [5| depict, respectively, recordings taken
at two arbitrary days, namely February 17 at LSMP and February 10 at
XJSP. These particular days have been selected as illustrative examples of the
multiple acoustic events that can be found in both databases. The figures also
illustrate the outcome of the proposed boat detection algorithm. Detections
are displayed in the form of a line graph at the bottom and temporally aligned
with the corresponding audio spectrogram.

The red line indicates the boat detections at their exact location in time
along the duration of the audios, and also informs the number of frequency
amplitude peaks associated with the boat event, as detected by the algorithm.
In the examples, the number of peaks varied from 0 (no boat detected) up
to 5 peaks in the recordings taken at the LSMSP site (Figure [4)); or from 0
up to 13 peaks in the recordings taken at the XJSP site (Figure [3)).

The boat detections identified have been confirmed by listening to the

corresponding audio files. In all cases, a manual inspection confirmed the
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automatic detection has been successful. In a few and very specific cases
false negatives occurred, with the algorithm failing to detect a boat that can
be identified in the audio; specific cases are discussed later in this section.

The boat detection line for the recordings from LSMSP (Figure 4)) shows
that the signatures of the boats detected in the early morning are charac-
terized by having one to three peaks and are not contiguous, whereas the
signatures of boats detected from 9:00am onwards are characterized by more
peaks which are also very close — these usually correspond to a series of short
duration acoustic events.

Observing the recordings from XJSP (Figure , one notices that longer
duration acoustic events associated with boats are frequent during certain
morning and evening periods. The boat detection line chart reveals multiple
short duration boat events occurring frequently from nearly 9:00am until
dusk. Short-term boat events have also been detected in the early morning,
before 9:00am, and during the evening, after 6:00pm. After 6:30pm, when
an overlapping fish chorus event is visible in the spectrogram, multiple boat
events have been detected with signatures characterized by higher numbers
of peaks. From 10:00pm it is possible to observe a long duration boat event
that persists until midnight.

Acoustic events typical of the site, such as fish choruses, can mask some of
the peaks characteristic of a boat signature, as frequency peaks of both events
overlap. They can still be distinguished by further inspecting the differences
in the amplitudes of the neighboring frequencies. Nonetheless, the overlap
may cause boat peaks at these frequencies to go undetected. In these cases,

succesful detection depends on a proper choice of the detection threshold
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defined relative to the standard deviation of the spectrum signature, which
is the single setting of the automatic detection process that may require user
adjustment.

Figure [ shows an example in which a long duration boat event has been
detected. The boat detection line chart appears as a line with a constant
number of peaks over a range of frequencies, which persists during nearly
the entire duration of the recording. The detection line chart shows two to
three peaks along minutes 1 to 9. The peaks overlap with the frequencies of
a simultaneous fish chorus event.

The audio of the spectrogram in Figure [7] includes an acoustic event oc-
curring from minutes 7 to 12, approximately. Listening to the audio one
observes the sound of (apparently) a motor boat that gradually approaches
the hydrophone and then its engine is turned off. The boat signature detec-
ted has a varying number of peaks: an initial detection indicates 3 peaks,
followed by a short period with no detection; the boat is again detected with
a signature of 8 peaks, going up to 12 peaks in minute 11, then in minute 12
only a single peak is detected, when the engine is powered off. The varying
number of peaks is due to the non uniform properties of the sound emission by
the boat. Its signal amplitude increases as it approaches the hydrophone and
fades away when the engine is suddenly turned off. The algorithm success-
fully detected the boat, despite the unfavourable conditions and overlapping
acoustic noise from a fish chorus.

Another difficult case for the algorithm is illustrated in Figure 8], in which
the audio depicts a short duration and non-uniform sound emission by a boat,

which is masked by extensive background noise due to crustacean acoustic
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activity. Nonetheless, the algorithm managed to achieve a partial recognition,
as indicated by the detection line graph, in minutes 5 and 6. Only one of
the peaks of the boat signature has been identified, due to the short interval
between the acoustic events and the overlapping noise.

A particular case in which the algorithm failed to detect the boat sig-
nature is shown in Figure [9 which depicts an audio that includes a boat
with non-constant acceleration. In this case, the frequencies of the spectral
signature do not exceed the default threshold that indicates a positive boat
detection. The acoustic event occurred in minute 12 of the recording, going
undetected due to the insufficient duration of the peaks in a single frequency.

Many boat occurrences have been detected in the recordings taken at
the LSMP site, even though boat visitation is controlled or even prohibited
at certain periods. Interestingly, from February 10 to 28 long-term acoustic
emissions by boats are detected often in the mornings, mostly boat signatures
characterized by up to two peaks. These emissions are low amplitude signals
and the boats are apparently located distant from the hydrophone. Yet the
algorithm successfully detected such occurrences, even though the recorded
signal often includes multiple acoustic events in addition to the boats.

Other cases confirm the effectiveness of the proposed algorithm. Consider,
for example, the audio illustrated in the spectrogram in Figure [I0] The
algorithm detected a boat signature characterized by a single frequency peak
in this recording. This was a particularly challenging case, because the boat
signal was faint and heavily masked by a loud noise due to crustacean acoustic
activity.

A second example is illustrated in Figure which depicts an audio in
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which the algorithm detected a boat signature characterized by 35 to 59
peaks along the duration of the recording. Although we cannot estimate the
distance of the boat to the hydrophone, its signal is sufficiently loud for its
signature to be properly detected even above the 1KHz frequency band.
Yet another challenging example are cases of multiple boats captured
in the same recording, possibly as overlapping acoustic events. The audio
spectrogram in Figure [12]shows a boat event that persists along the duration
of the recording, however a second boat event occurs in minutes 4 to 6.
This is difficult to handle due to the overlap of both boat signatures. The
signatures computed for the audio samples depicting minutes 2 to 5 are
shown in Figure [I2]to illustrate how multiple events interfere in the detection
process. In the signatures of minutes 2 and 3 one observes the complete and
the partial signatures of the persistent boat; in minute 4 the transient boat
event partly masks the previous signature, introducing additional peaks. The
emission by the transient boat in minute 5 is sufficient to mask the signature
of the persistent boat, as it adds noise in the frequency band from 200Hz to
2kHz. The consequence is that only the signature of the transient boat is

detected.

Comparison: FAV vs DEMON

A DEMON implementation based on square-law demodulation by Pollara
et al.| (2016]) available onlind—ﬂ has been used as baseline for a comparison with

the proposed FAV signature, regarding detection accuracy and processing

Zhttps://github.com/1xpollara/pyDEMON
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a3 times. The code and audio samples used in the analysis and comparisons
a7a can be downloaded from github (Reis|, 2019)).

a75 We conducted the comparison on 96 audio files selected from our data-
ars bases (Xixova and Japui State Parks), corresponding to 24 hours of au-
a7 dio analysed at a one-minute sample resolution, totaling 1,440 one-minute
ars samples representative of typical scenarios found in underwater ecological
are recordings. We conducted a manual annotation process and identified that
as0  from the 1,440 samples considered, 706 do not include boat events, whereas
a1 the remaining 734 include diverse observable boat occurrences, varying from
a2 very clear to very faint signals. The samples depict distinct situations, in-
as3  cluding non-uniform vessel emissions near the hydrophone and other difficult
asa  scenarios characterized by overlapping with crustacean acoustic emissions or
ass fish choruses.

486 The DEMON signature computation requires the definition of a target
a7 frequency window for each detection scenario. Inadequate choice of this
ass initial input parameter can render the detection task unfeasible. In order to
a0 ensure a proper comparison, the input samples were processed similarly for
a0 both methods, setting the higher frequency to 900H z and the low frequency
a1 to 400H z as the default parameters for the DEMON signature calculations.
a2 Each one-minute sample was smoothed with a size 11 Blackman window
203 convolution, and the corresponding standard deviations were extracted.

404 In both methods, a detection occurs whenever the corresponding signa-
a0s ture exceeds the corresponding detection threshold, where each excess will
a6 correspond to a frequency peak in the boat detection signature. We kept the

a7 default detection threshold for the FAV signature, i.e., 1.5x standard deviation.
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Setting the detection threshold for DEMON requires a different approach,
however, as the base signals vary in amplitude due to interference of noise.
Thus, we set an initial threshold as in FAV (1.5 x standard deviation), then
obtained a basis amplitude for each frequency by smoothing the DEMON sig-
nature with a size 64 Blackman window convolution. The basis amplitudes
thus obtained were then added to the initial threshold.

Under normal conditions these threshold settings enabled both methods
to correctly detect the presence of boats and create the corresponding boat
signatures. An example for a particular one minute sample is illustrated in
Figure [I3] where a boat with two frequency peaks can be observed, which
has been correctly detected in both FAV and DEMON signatures. However,
results from the methods differ in more challenging conditions. Detection
results for a noisy sample are illustrated in Figure [I4, where FAV correctly
identified a boat with eight frequency peaks. The DEMON signature, how-
ever, detected only one of the peaks and also incurred in a false positive
detection of a frequency peak which is not due to a boat.

Considering all 1,440 samples, we computed the detection accuracy and
the correctness of the number of peaks identified in the signatures obtained
from both methods. Detection accuracy is reported as the numbers and
percentages of correct and incorrect boat detections. The signature accuracy
is measured as the number of detected frequency peaks, relative to the true
number of peaks. We report the average percentages for each method, over
all signatures extracted.

Table [T] shows two confusion matrices displaying the detection accuracy

results for the FAV and the DEMON implementations, respectively. The
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columns labeled Reality inform the number of boat occurrences according
to the manual annotation, the rows labeled Algorithm show the results
obtained with FAV or DEMON. Table [2] summarizes the accuracy rates and
also the false positive and false negative rates.

FAV correctly detected the presence of boats in 684 out of the 734 samples
with boat occurrences, an accuracy rate of 93%. It missed 50 occurrences,
and incured in no false positives. DEMON correctly detected 406 boat occur-
rences, an accuracy rate of 55%. It missed 328 boat events, and incorrectly
detected 84 acoustic events as boats. The false-negative rates in our ana-
lysis of DEMON could be disputed, since the manual annotation identified
some very faint boat signals. Possibly different calibrations of DEMON would
be required for it to perform better on the database as a whole, as the condi-
tions describing boat events vary considerably. On the other, FAV has shown
very robust performance with the settings employed, regardless of the varied
conditions.

For the 734 samples including boat occurrences we also computed the
correctness of the number of frequency peaks identified, as a measure of the
quality of the signatures computed. For instance, given a boat signature
with 5 frequency peaks, if a method computes the signature with 3 peaks, its
resulting signature accuracy is 60%. As informed in Table [2| (second row),
the average signature accuracy of the FAV method over all samples was 80%,
whereas for the DEMON method it was 29%.

Table [3] shows the times, in seconds, to extract the DEMON and FAV
signatures for a 15 minute audio recording and for a one minute sample of the

same recording, considering five executions of the algorithm implementations.
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In the 15 minute sampling we observe a speed up of nearly 230, as the average
execution times drop from 6.743 seconds to compute the DEMON signature
to 0.029 seconds to compute the FAV signature. In the one minute sample
the DEMON signature has been computed in 0.416 seconds in average, and
the FAV signature in 0.006 seconds, a speed up of nearly 70.

These empirical investigations provide evidence on the improved perform-
ance of the FAV algorithm over the DEMON implementation, regarding both
computational cost and accuracy, the later measured in terms of detection
correctness and signature quality. Moreover, unlike DEMON, FAV requires
no specific settings or prior knowledge of the boat frequency signatures. It
is a self-contained solution that relies solely on the input signal of the au-
dio spectrum. A single user setting is required to establish the detection
threshold, where the default setting as 1.5 x Standard Deviation of the
original spectrum proved adequate in all cases appearing in the databases

considered.

Summary

In this paper we introduced FAV, a method to detect the presence of ves-
sels in underwater ecological acoustic recordings. Results from experiments
conducted on recordings collected in February 2015 at two sites in Brazil
provide empirical evidence on its effectiveness. The examples discussed show
the method can successfully detect the presence of boats even in difficult
conditions, such as faint signals and multiple overlapping acoustic events.

Manual inspection of all the recordings considered in the experiments re-
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vealed no false positives and a small rate of missed detections in very specific
situations.

The algorithm can recognize boats under constant acceleration, where the
resulting sound signal caused by cavitation generates characteristic peaks
at short frequency intervals. The failure cases were of boats with erratic
acceleration behavior. This situation shall be addressed in further work,
possibly with an analysis of the amplitude variation in time, combined with
frequency information and machine learning methods to recognize specific
patterns.

Besides detecting emissions by boats and ships, the FAV signature is also
susceptible to sound emission by airgun arrays. The reason is that such
devices produce acoustic energy with frequency amplitudes mostly under
100Hz (Hermannsen et al., 2015; Landro et al., [2011)), the same band of the
boat emissions. For boat detection purposes, if an acoustic signal emitted
by an airgun array is identified one can assume the consequent detection of
a boat signal, since airgun arrays are towed by boats.

In comparison with the classic DEMON method, which also relies on
analysis of the acoustic signal for boat detection, our solution provides an al-
ternative that is easy to implement and does not require extensive processing
power or complex configuration of input parameters. DEMON, on the other
hand, requires human intervention to define the best filters for each type of
target signal and is computationally more expensive.

In future work we intend to tackle the problem of boat classification
based on their characteristic FAV signatures. We believe classification would

be feasible with a combination of machine learning and data visualization
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methods integrated into a visual analytics solution that supports user steer-
ing. The simultaneous detection of multiple ship signatures is another chal-

lenging task that deserves further attention.
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«s lables

Table 1  Detection accuracy of FAV and DEMON algorithms on a database

of 1,440 one minute audio samples.

Confusion matrix FAV Confusion matrix DEMON
Reality Reality
NO Boat | Boat No Boat | Boat
NO Boat 706 50 NO Boat 622 328
Algorithm Algorithm
Boat 0 684 Boat 84 406
7# Samples 706 734 # Samples 706 734
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Table 2  Boat detection accuracy and signature accuracy results obtained
with the FAV and DEMON implementations, as well as false positive and

false negative detection rates.

FAV | DEMON

Detection accuracy | 93.19% 55.31%

Signature accuracy | 80.38% | 29.21%

% of false positives | 0.00% 10.63%

% of false negatives | 20.42% | 45.14%
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Table 3 Times (in seconds) to compute the boat signatures of a 15 minute
audio recording and of a one minute sample extracted from the same audio.
Time measures were obtained from five executions of each (DEMON /FAV)

implementation on a Intel@© Core™ {7 — 7700 @ 3.60GHz x 4 with 16GB

memory.
15 minute audio One minute audio

DEMON | FAV DEMON | FAV

;2\ 6.672 | 0.031 0413 | 0.006

§ 6.760 0.029 0.421 0.006

% 6.743 0.030 0.416 0.006

"E 6.790 0.027 0.431 0.006

6.606 0.029 0.409 0.006

Avg 6.743 0.029 0.416 0.006
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o Flgures

Fig. 1 Logarithmic scale spectrograms of two underwater recordings. The
red squares mark frequency peaks due to boats and the blue squares mark
peaks due to fish choruses. Both recordings include background noise due
to acoustic emission by crustaceans, that can be perceived as vertical lines
in the spectrograms. (A) 15-minute audio spectrogram with two types of
fish chorus and a boat signature characterized by three peaks; (B) 15-minute
spectrogram with a single boat signature characterized by 10 peaks and heavy

background noise due to crustacean emissions.
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Fig. 2 In both charts the blue lines depict, respectively, the frequency
spectra (up to 2.7kHz) of an input signal in dB (A) and in dB?* (B); the
green and red dotted lines depict the spectral signal smoothed by convolution
with a size 11 blackman window, scaled respectively by 1.5x and by 3X its
standard deviation. The vertical watermarks in red identify the frequency

peaks due to boat emissions.
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Fig. 3 Spectrum signature (blue line), FAV signature (green line) and
binary boat detection signature (red marks) of (A) a recording that includes
fish chorus and a boat; and (B) a recording that includes a small boat at

minute 11. The horizontal dotted purple lines indicate the threshold defined

to associate frequency peaks with acoustic emissions by boats.
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Fig. 4 24-hour spectrogram (frequency band from 0 to 2KHz) of the audio
recordings taken at LSMSP in February 17, 2015. The recordings captured
three types of fish chorus (A, B and C), as well as long and short duration
sound emissions by boats and ships (D). The line chart at the bottom shows
the detections obtained with the proposed method minute-by-minute and the

number of peaks that characterize the corresponding boat signature.
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Fig. 5 24-hour spectrogram (frequency band from 0 to 2KHz) of audio
recordings taken at XJSP in February 10, 2015. The recordings captured
three types of fish choruses (A, B and C) and sound emissions by multiple
ships (D) appearing as long and short duratio acoustic events. The detec-
tion line chart shown under the spectrogram reveals a concentration of short
duration boat events in the period from around 9:00am to 11:00am; their

corresponding signatures are characterized by up to 13 frequency peaks.

2,000
1,800

1,600

1,400 ]

N

I

= 1,200

>

2

S 1000+

3

@ 9007 @

i i
500 |
400

200 ¢

=

0146 04:33 o720 10:06 12:53 15:40 18:26 2113 00:00

..M L L

"
T

0 200 400 600 . 800 1,000 1,200 1,400

Minutes

[a

=
L

# of peaks
detected

37



Fig. 6

cording taken at XJSP in February 4, 2015 at 05h:39m:52s.

15-minute spectrogram (frequency band from 0 to 1KHz) of a re-

A boat has

been detected in the interval from minutes 1 to 9; the corresponding boat

detection line chart is shown at the bottom.
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Fig. 7 15-minute spectrogram of a recording taken at XJSP in February
4, 2015 at 21h:12m:44s (frequency band from 0 to 1KHz). A boat occurrence
has been detected in the interval from minutes 7 to 12; the corresponding

boat detection line chart is shown at the bottom.
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Fig. 8

15-minute spectrogram (frequency band from 0 to 1KHz) of a re-

cording taken at XJSP in February 4, 2015 at 10h:40m:46s, in which a boat

has been detected during minutes 5 and 6; the corresponding boat detection

line chart is shown at the bottom.
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Fig. 9 15-minute spectrogram (frequency band from 0 to 1KHz) of a re-
cording taken at XJSP in February 4, 2015 at 10h:10m:42s. Listening to the
audio it is possible to identify the sound of a boat at minute 12, which the
algorithm failed to detect, as observed in the corresponding detection line

chart at the bottom.
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Fig. 10 15-minute spectrogram (frequency band from 0 to 1KHz) of a
recording taken at LSMP in February 11, 2015 at 06h:27m:57s. The low
amplitude signal from a boat has been detected in the invervals from minutes
0 to 3 and from 8 to 11, even though it is masked by crustacean noise, as

observed in the boat detection line chart shown at the bottom.
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Fig. 11  15-minute spectrogram (frequency band from 0 to 1KHz) of a re-
cording taken at LSMSP in February 11, 2015 at 15h:29m:54s. The signature
of a boat has been detected along the duration of the recording, characterized
by 35 up to 59 frequency peaks, as observed in the corresponding detection

line chart.

1,000
900
800
700
600
500
400
300
200
100

Frequency (Hz)

00:00 01:40 0320 05:00 06:40 08:20 10:.00 11:40 13:20 15:.00
Time (minutes:seconds)

s] L

50 — _|_|_
45 —

40 —
35

# of peaks
detected

1 I 1 I I 1 I 1 1
0 100 200 300 400 500 600 700 800 900
Time (seconds)

43



Fig. 12 15-minute spectrogram of a recording taken at LSMSP in February
4, 2015 at 04h:48m:55s, where overlapping sound emissions from two boats
can be observed. The charts show the signatures computed of the audio
samples corresponding to minutes 2, 3, 4 and 5, displaying the input spectrum
signature (blue lines) with the corresponding boat detections highlighted by

the red vertical lines.
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Fig. 13 FAV and DEMON signatures obtained for a one-minute audio
sample that includes crustacean acoustic activity overlaped with a persistent
acoustic emission by a boat (spectrogram on the right). The dotted gray
lines indicate the detection threshold (1.5 x Standard Deviation). Both
algorithms correctly detected the boat signature, with two frequency peaks.
The red watermarks indicate the peaks detected in the FAV signature (purple
line); the black dots indicate the detections in the DEMON signature (green
line).
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Fig. 14 FAV and DEMON signatures obtained for a one-minute audio
sample that includes crustacean acoustic activity overlaped with a persistent
acoustic emission by a boat (spectrogram shown on the right). The dotted
gray lines indicate the detection threshold (1.5 x Standard Deviation). In
this case the boat signature is characterized by eight frequency peaks. The
red watermarks indicate the boat peaks correctly detected in the FAV sig-
nature (purple line); the black dots indicate the detections in the DEMON
signature (green line). The DEMON algorithm identified a single peak due
to the boat, the other peak is actually a false-positive, not related to the
boat.
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